Example name Systolic BP

Effect size Mean difference Analysis type Basic Level Basic

Synopsis

This analysis includes four studies where persons who donated a kidney were compared with persons in a control group. Outcome was the Systolic Blood Pressure. Effect size was the difference in mean Systolic Blood Pressure.

We use this example to show

- How to enter data for means in two independent groups
- How to get a sense of the weight assigned to each study
- How weights are affected by the statistical model
- How to interpret statistics for effect size
- How to interpret statistics for heterogeneity

To open a CMA file > Download and Save file | Start CMA | Open file from within CMA

Download CMA file for computers that use a period to indicate decimals Download CMA file for computers that use a comma to indicate decimals

Download this PDF Download data in Excel Download trial of CMA

Start the program

- Select the option [Start a blank spreadsheet]
- Click [Ok]

🕂 Comprehensive meta a	nalysis - [Data]												
<u>File</u> Edit Format <u>V</u> iew	Insert Identify	y <u>T</u> ools Comput	ational options Ana	ilyses <u>H</u> elp									
Run analvses → % 🗅	😂 🚟 🔲 🖉	3 X 🗈 🕰	፳ ▸_ ▸_ ▸들 .		$\downarrow \rightarrow +$	/ 🗌 灯 3							
				100 100 1 1			11 N						
A B	C	D E	F	G H		J	К	L	м	N	0	P	Q
1				(B. We	elcome					×			
2													
3				- H							-		
4				w w	hat would you	ike to do?							
5										- 11			
7													
8					Bun the tutorial								
9				•	Start a blank spr	eadsheet							
10					Start a new onre	adebaat usina :	a templa e						
11													
12					Upen an existing	hle							
13					Import data from	another progra	m						
14				_							-		
16													
17													
18													
19													
20													
21													
22													
23													
24													
26													
27													
28													
29				×	5 Show this dialog	when I start th	e program						
30							Cle	ose	OK	1			
31										·			
32													
33				_									
34													
35													

Click Insert > Column for > Study names

🕂 Comprehensive meta a	analysis - [Data]							
<u>File Edit Format View</u>	Insert Identify Tools Computational	options Analyses <u>H</u> elp						
Run analyses 🔸 🗞 🗋	Column for 🕨 Stu	udy names	$\bullet \downarrow \rightarrow + \checkmark$	´ □ ≜ ↓ 3	🗱 🔍			
A B	Blank column Su	ubgroups within study \\ omparison names	H I	J	к	L	м	N
1 2 3 4 5 6 7 8 9	Copy of selected column Course Copy of selected row(s) Copy of selected row(s	utcome names me point names fect size data loderator variable						

The screen should look like this

🕂 Co	mprehensive met	a analysis - [[Data]											
<u>F</u> ile	<u>E</u> dit Format <u>V</u> ie	ew <u>I</u> nsert I	dentify <u>T</u> o	ols Compu	tational opt	ions Analys	ses <u>H</u> elp							
Run a	nalyses 🔸 🗞 [<u>) 🛋 </u> 🕯 I		X 🖻 🛍	∕≣ ►-•	= *≣ #3	8 號 🛗 🔻	$\downarrow \rightarrow \neg$	- ✓ 🗆	AL AL				
	Study name	в	С	D	E	F	G	н	I	J	к	L	м	N
2														
3														
4														
6														
8														
10														

Click Insert > Column for > Effect size data

🕂 Comprehe	ensive meta a	analysis - [Data]									
<u>F</u> ile <u>E</u> dit F	ormat <u>V</u> iew	Insert Identify Tools Compu	tational options Analyses <u>H</u> elp)							
Run analyses	s → 🗞 🗋	Column for 🕨	Study names	$\downarrow \downarrow \rightarrow -$	+ 🗸 🖂	21 Z1 🤅					
Stud	dy name	Blank column	Subgroups within study Comparison names	н	I	J	к	L	м	N	
1 2 3		Blank row	Outcome names Time point names								
4		Copy of selected row(s)	Effect size data Moderator variable								
6 7 8		Y Study		1							

The program displays this wizard

Select [Show all 100 formats] Click [Next]

Select [Comparison of two groups...] Click [Next]

Types of studies included

On this panel, select the type of studies to be included in this meta analysis. This controls the types of data entry options to be displayed on the next panel.

If unsure, select the first option, which is appropriate for most analyses. You will be able to return to this panel and change the selection.

- Comparison of two groups, time-points, or exposures (includes correlations)
- C Estimate of means, proportions or rates in one group at one time-point
- C Generic point estimates

C Generic point estimates, log scale

Drill down to

Continuous (means) Unmatched groups, post-data only Mean, SD and sample size in each group

© www.Meta-Analysis.com

— 4 —

The program displays this wizard

Enter the following labels into the wizard

- First group > Donor
- Second group > Control

Click [Ok] and the program will copy the names into the grid

🕂 Con	prehensive met	a analysis	- [Data]							-								
<u>F</u> ile <u>E</u>	dit Format <u>V</u> i	ew Insert	Identify	<u>T</u> ools Compu	tational op	tions Ana	lyses <u>H</u> elp											
Run an	alyses → 🏷	0 😅 🖣	8	X 🖻 🛍	2 -		::: ta 👬 🔻	$\rightarrow + \checkmark$. 😲								
	Study name	Donor Mean	Donor Std-Dev	Donor Sample size	Control Mean	Control Std-Dev	Control Sample size	Iffect direction	Std diff in means	Std Err	Variance	Hedges's g	Std Err	Variance	Difference in means	Std Err	Variance	
1)										
3																		
4																		
6																		
7						Gro	up names				• ×							
9						Gre	up names for	ashart ar praspa	otivo etr									
10									Cure state	•								
12						Nan	ne for first group	e.g., Ireated)		Donor								
13						Nan	ne for second gro	oup (e.g., Control)	U	Loutto								
14																		
16								Cancel	Apply)k							
17																		
19						-				_								
20																		

There are three options at this point

- Enter the data directly into CMA
- - or Open the CMA data file "Systolic BP after kidney donation.cma"
- - or Copy the data from Excel "Systolic BP after kidney donation.xls"

Here, we'll show how to copy the data from Excel

- Switch to Excel and open the file
- Highlight the rows and columns as shown (Columns A to G), and press CTRL-C to copy to clipboard

X F	ILE HOME IN	; ISERT P/	AGE LAYOUT	f form	IULAS D	ATA R	EVIEW V	Syst IEW	tolic BP after ki ACROBAT	dney don
A	L :	× ✓	<i>f</i> ∞ Stu	dy						
	Α	В	С	D	E	F	G	Н	Ι	J
1	Study	Donor M	Donor SD	Donor N	Ctrl M	Ctrl SD	Ctrl N			
2	Najarian, 1992	134	15	57	130	21	50			
3	Undurraga, 1998	125	18	30	118	13	30			
4	Talselth, 1986	140	23	32	132	29	32			
5	Williams, 1886	136	25	38	129	16	16			
6										
7										
•										

- Switch to CMA
- Click in cell Study-name 1
- Press [CTRL-V] to paste the data
- The screen should look like this

, † 0	Comprehensive met	a analysis	- [Data]						ing density	and the second second		
<u>F</u> ile	<u>E</u> dit Format <u>V</u> ie	w <u>I</u> nsert	Identify 1	ools Comput	tational op	tions Analy	yses <u>H</u> elp					
Run	analyses → 🏷 [נ 🖻	6	እ 🖻 🛍	/四	}= }≣ ÷	% t‰ t≓ ▼	$\downarrow \rightarrow + \checkmark$	□ ੈ‡ ੈ↓	•		
	Study name	Donor Mean	Donor Std-Dev	Donor Sample size	Control Mean	Control Std-Dev	Control Sample size	Effect direction	Std diff in means	Std Err	Variance	Hedges
1	Study	Donor M	Donor SD	Donor N	Ctrl M	Ctrl SD	Ctrl N					
2	Najarian, 1992	134.000	15.000	57	130.000	21.000	50					
3) Undurraga, 1998	125.000	18.000	30	118.000	13.000	30					
4	Talselth, 1986	140.000	23.000	32	132.000	29.000	32					
5	i Williams, 1886	136.000	25.000	38	129.000	16.000	16					
E	ò											
7	7											

Click here

Click here

After checking that the data has been copied correctly, we can delete Row 1

- Click anywhere in Row 1
- Select Edit > Delete row, and confirm

👬 Co	omp	rehensive meta and	alysis - [C)ata]						/				
<u>F</u> ile	<u>E</u> di	it Format <u>V</u> iew <u>I</u>	Insert Id	entify]	<u>F</u> ools Compu	tational op	tions Anal	yses <u>H</u> elp						
Run	¢۵,	Bookmark data		1 3	ቆ 🖻 🛍	⁄酒 •—	}= }≣ 4		$\downarrow \rightarrow + \checkmark$. 🔍			
	ß	Restore data Column propertie	es	onor J-Dev	Donor Sample size	Control Mean	Control Std-Dev	Control Sample size	Effect direction	Std diff in means	Std Err	Variance	Hedges's g	Std Err
1	e e	Copy selection	Ctrl+C	or SD 15.000	Donor N 57	Ctrl M 130.000	Ctrl SD 21 000	Ctrl N 50						
3	8	Copy with header	r	18.000	30	118.000	13.000	30						
4	Ē	Copy entire grid		23.000	32	132.000	29.000	32						
6	e	<u>P</u> aste	Ctrl+V	25.000	38	129.000	16.000	16						
7	Ж	C <u>u</u> t	Ctrl+X											
8	Ø	Delete	Del	<u> </u>										
10		Delete row												
11		Delete study	45											
12		Delete column		-										
13		Edit group names	5	<u> </u>										
15	_													
16														

We need to enter a value for "Effect Direction"

Enter "Auto	o" fo	r each	n study						Click	here						
🕂 Comprehensive met	ta analysis	- [Data]						/	_							
<u>File Edit Format Vi</u>	ew Insert	Identify]	ools Comput	ational opt	ions Analy	/ses <u>H</u> elp										
Run analyses 🔸 🗞	D 🚅 🐔	8	% 🖻 🛍	ا - ا	'= * ≣ ⊀	.8 t∺ ▼	$\downarrow \rightarrow + \checkmark$	⊂ ậ∔ ≩∔	Q							
Study name	Donor Mean	Donor Std-Dev	Donor Sample size	Control Mean	Control Std-Dev	Control Sample size	Effect direction	Std diff in means	Std Err	Variance	Hedges's g	Std Err	Variance	Difference in means	Std Err	Variance
1 Najarian, 1992	134.000	15.000	57	130.000	21.000	50	Auto	0.222	0.194	0.038	0.220	0.193	0.037	4.000	3.497	12.232
2 Undurraga, 1998	125.000	18.000	30	118.000	13.000	30	Auto	0.446	0.261	0.068	0.440	0.258	0.067	7.000	4.054	16.433
3 Talselth, 1986	140.000	23.000	32	132.000	29.000	32	Auto	0.306	0.251	0.063	0.302	0.248	0.062	8.000	6.543	42.813
4 Williams, 1886	136.000	25.000	38	129.000	16.000	16	Auto	0.307	0.299	0.090	0.303	0.295	0.087	7.000	6.786	46.056
5																
6																
7																
8																
9																
10																

The program displays three effect sizes -d, g, and raw mean difference

- We want to hide the indices d and g
- We want to set the raw mean difference as the primary index

•	Comprehensive meta	a analysis	- [Data]					and the state of	ing investo							
Eil	e <u>E</u> dit Format <u>V</u> ie	w <u>I</u> nsert	Identify <u>1</u>	ools Comput	tational op	tions Analy	yses <u>H</u> elp									
Ru	in analyses 🔸 🗞 [ጋ 🚅 🖷		አ 🖻 🛍	⁄酒)	}= }≣ ≠	% t% 💾 👻	$\checkmark \rightarrow + \checkmark$								
	Study name	Donor Mean	Donor Std-Dev	Donor Sample size	Control Mean	Control Std-Dev	Control Sample size	Effect direction	Std diff in means	Std Er	rr	Variance	Hedges's g	Std Err	Variance	Differenc in mean:
	1 Najarian, 1992	134.000	15.000	57	130.000	21.000	50	Auto	0.222	0.1	194	0.038	0.220	0.193	0.037	4.0
	2 Undurraga, 1998	125.000	18.000	30	118.000	13.000	30	Auto	0.446	0.3	261	0.068	0.440	0.258	0.067	7.0
	3 Talselth, 1986	140.000	23.000	32	132.000	29.000	32	Auto	0.306	0.1		0.000	0.000	0.040	° <mark>062</mark>	8.0
	4 Williams, 1886	136.000	25.000	38	129.000	16.000	16	Auto	0.307	0.	2 +	Sort A-Z			087	7.0
	5										Z I	Sort Z-A				
	6											Caluma				
	7											Column pr	opercies			
	8											Data entry	assistant			
	9										Σ	Formulas				
H	1											Show all ce	lected indice			
	2										Innn	Show an se	incered marce			
	2										000	Show only	the primary	index		
1	4										85	Set primary	index to Sto	l diff in mea	ns	
1	5										+	Customize	computed e	ffect size dis	play	
1	6										_			1		
1	7															

- Right-click in any yellow column
- Click "Customize computed effect size display"

In the wizard,

- Select "Difference in means" in the drop-down box
- Un-check "Std diff in means"
- Un-check "Hedges's g"

analyses 🔸 🗞	🗅 🧀 🖷	8	አ 🖻 🛍	2 · ·	'= ' ≣ ;	. + + 8. * *	$\downarrow \rightarrow + \checkmark$		•							
Study name	Donor Mean	Donor Std-Dev	Donor Sample size	Control Mean	Control Std-Dev	Control Sample size	Effect direction	Difference in means	Std Err	Variance	L	м	N	0	Р	Q
Najarian, 1992	134.000	15.000	57	130.000	21.000	50	Auto	4.000	3.497	12.232						
Undurraga, 1998	125.000	18.000	30	118.000	13.000	30	Auto	7.000	4.054	16.433		Effect size in	dices		- (• X
Talselth, 1986	140.000	23.000	32	132.000	29.000	32	Auto	8.000	6.543	42.813		. Enece size ii	luices			
Williams, 1886	136.000	25.000	38	129.000	16.000	16	Auto	7.000	6.786	46.056		Use the follow	ing as the pr	mary index		
												Difference in	means			•
												Display colum	ns for these i	ndices		
												Oddsr Log oc Peto o Log Pr Risk ra Log risk Risk d Std dif Hedga Differe Std Pa Correls Fisher Rate r Log ra Rate r	atio dds ratio dds ratio ato odds ratio ato odds ratio titio k ratio fiference fin means s's g nce in means s's g nce in means sired Difference tition s Z atio te ratio fiference f ratio	: Je		
												Also show	standard err	Dr		
												Also show	variance			
1												C. Show the	nrimaru indev	onlu		
												G Chourelle	plantary in 007	y		
												 Snow all s 	electeu indic	c.,		
															(ik l

The screen should look like this

M N	0
	M N

Click File > Save As and save the file

Comprehensive m	neta analysis	- [C:\Users\	Biostat\Dropbo	ox\Worksh	ops Three-D	Day∖BP after Ki	dney donation\Sy	stolic BP afte	er kidney do	nation.cma]				
<u>File</u> <u>E</u> dit Format	<u>V</u> iew <u>I</u> nsert	Identify 1	ools Comput	tational op	tions Analy	yses <u>H</u> elp								
🗅 New	•		እ 🖻 💼	2	'= ' ≣ <i>∔</i>		$\checkmark \rightarrow + \checkmark$		•					
©pen ☐ Opening screen	Ctrl+O	Donor Std-Dev	Donor Sample size	Control Mean	Control Std-Dev	Control Sample size	Effect direction	Difference in means	Std Err	Variance	L	м	N	0
The server	WIZdru	15.000	57	130.000	21.000	50	Auto	4.000	3.497	12.232				
Import		18.000	30	118.000	13.000	30	Auto	7.000	4.054	16.433				
Save	Ctrl+S	23.000	32	132.000	29.000	32	Auto	8.000	6.543	42.813				
Save <u>A</u> s	- <u>k</u> -	25.000	38	129.000	16.000	16	Auto	7.000	6.786	46.056				
🗐 Print	Ctrl+P													
Print setup														
Exit														
10														

Note that the file name is now in the header.

- [Save] will over-write the prior version of this file without warning
- [Save As...] will allow you to save the file with a new name

₊ с	omprehensive met	a analysis	- [C:\Users\	Biostat\Dropbo	ox\Worksh	ops Three-[Day∖BP after Ki	dney donation\Sy	stolic BP afte	r kidney do	nation.cma]				
<u>F</u> ile	<u>E</u> dit Format <u>V</u> ie	w <u>I</u> nset	Identify 1	Cools Comput	ational op	tions Analy	vses Help)		
Run	analyses 🔸 🗞 [ጋ 🚅 🖷	8	አ 🖻 🛍	2	'= *≣ <i>∓</i>	% *** ▼	$\checkmark \rightarrow + \checkmark$		0					
	Study name	Donor Mean	Donor Std-Dev	Donor Sample size	Control Mean	Control Std-Dev	Control Sample size	Effect direction	Difference in means	Std Err	Variance	L	м	N	0
1	Najarian, 1992	134.000	15.000	57	130.000	21.000	50	Auto	4.000	3.497	12.232				
2	Undurraga, 1998	125.000	18.000	30	118.000	13.000	30	Auto	7.000	4.054	16.433				
3	Talselth, 1986	140.000	23.000	32	132.000	29.000	32	Auto	8.000	6.543	42.813				
4	Williams, 1886	136.000	25.000	38	129.000	16.000	16	Auto	7.000	6.786	46.056				
5															
6															
7															
8															
9															
10															
11															
12															

There are two options for computing the variance of the mean difference. We can pool the estimates from the two groups, or keep them separate. We will pool them.

Click Computational options > Variance for mean difference

, † (Comprehensive met	a analysis -	[C:\Users\B	Biosta	t\Dropbox	Workshop	s Three-Day	\BP after	Kidne	y donation\Syst	olic BP after	kidney dona	tion.cma]				
<u>F</u> ile	<u>E</u> dit Format <u>V</u> ie	ew <u>I</u> nsert	Identify <u>T</u>	ools	Computat	ional optic	ons Analyse	s <u>H</u> elp									
Rur	nanalyses → 🏷	🗅 🚅 🖷		8	Corre	lation for i	mputing pair	red SD	· 🗸	$\rightarrow + \checkmark$	≜∔ Z↓	Q					
	Study name	Donor Mean	Donor Std-Dev	Sai	Variar Symn	nce for me netry for co	an difference onfidence int	ervals	e	Effect direction	Difference in means	Std Err	Variance	L	м	N	o
-	Najarian, 1992	134.000	15.000		Variar	- nce for Hea	laes's a		50 A	\uto	4.000	3.497	12.232				
1	2 Undurraga, 1998	125.000	18.000			110.000	13.000		_ 30 A	Auto	7.000	4.054	16.433				
	3 Talselth, 1986	140.000	23.000		32	132.000	29.000		32 A	Auto	8.000	6.543	42.813				
4	Williams, 1886	136.000	25.000		38	129.000	16.000		16 A	Auto	7.000	6.786	46.056				
Ę	5																
6	6																
	7																
1	3																
	1																

- Check the option "Assume a common variance"
- Click Ok

🗄 Comprehensive meta analysis - [C:\Users\Biostat\Dropbox\Workshops Three-Day\BP after Kidney donation\Systolic BP after kidney donation.cma]

Ran analyses → Image: Solution in the second	<u>F</u> ile	<u>E</u> dit Format <u>V</u> ie	w <u>I</u> nsert	Identify <u>T</u> e	ools Computa	tional optic	ons Analys	es <u>H</u> elp								
Study name Doron Doron Doron Studye Sample size Effect direction Difference Stud Er Valance L M N 0 1 Neasin, 192 134000 15.000 57 130.000 21.000 50 Au/o 4.000 3.497 12222	Run	analyses → 🏷 [ጋ 🚅 🖷		ኤ 🖻 💼 😫	2 → - +	= ▶≣ ;00	*.8 ** ▼	$\downarrow \rightarrow + \checkmark$		Q					
1 Nagain, 1932 134.000 15.000 57 130.000 21.000 50. Auto 4.000 3.487 12.322 2 Unduraga, 1938 125.000 30 140.000 3.080 30 140.000 5.483 42.813 4 Wildmen, 1865 130.000 25.000 38 122.000 16.000 16.4uo 7.000 6.548 42.813 6 136.000 25.000 38 123.000 16.4uo 7.000 6.786 46.056 7 146.01 146.01 140.00 5.786 46.056 140.00 140.00 140.00 140.00 140.00 150.00 16.4uo 7.000 6.786 46.056 7 140.01		Study name	Donor Mean	Donor Std-Dev	Donor Sample size	Control Mean	Control Std-Dev	Control Sample size	Effect direction	Difference in means	Std Err	Variance	L	м	N	O
2 Unduraga, 1958 125.000 18.000 30 118.000 32 300 32 Auto 8.000 563 4.2813 3 Tableth, 1958 135.000 25.000 38 123.000 16.000 16 Auto 8.000 6.786 46.056 5 Image: Antice and the state of	1	Najarian, 1992	134.000	15.000	57	130.000	21.000	5	0 Auto	4.000	3.497	12.232				
3 Tabelh, 1986 140.000 23.000 32 132.000 32 Auo 8.000 543 42813 4 William, 1886 136.000 25.000 38 123.000 16.000 16 Auto 7.000 6.786 46.056 6 7	2	Undurraga, 1998	125.000	18.000	30	118.000	13.000	3	0 Auto	7.000	4.054	16.433				
4 Williams, 1886 136.000 25.000 38 123.000 16.000 16 Auto 7.000 6.786 46.056 5 5 5 5 5 5 5 5 5 6 5 6 5 5 5 5 5 5 5 5 5 5 5 6 5 6 5 6 5 6 5 6 5 6 5	3	Talselth, 1986	140.000	23.000	32	132.000	29.000	3	2 Auto	8.000	6.543	42.813				
5 6 7 8 9 10 11 12 14 13 14 14 15 16 17 18 19 19 22 23 24 25 26 27 28 29 30 31 32 34 44 25 26 27 28 39 30 31 32 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 34 35	- 4	Williams, 1886	136.000	25.000	38	129.000	16.000	1	6 Auto	7.000	6.786	46.056				
6 7 8 9 10 11 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29 20 20 21 22 23 24 25 26 27 28 29 20 20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	5	i														
7 Variance for raw mean difference in independent groups. 10 When a study includes data for two independent groups, the user may elect to enter the SD for each of the groups separately. In this case the program can pool the variance in the two groups (option 1) or not pool them (option 2). 11 This option affects the variance (and weights) used in an analysis of raw mean differences. It has no impact on analyses of standardized mean differences. It h	6	5							L. Options for c	omputing tre	atment effe	ects		×		
8 A 9 A 10 A 11 A 11 A 12 A 13 A 14 A 15 A 16 A 17 A 18 A 19 A 11 A 12 A 13 A 14 A 15 A 16 A 17 A 18 A 19 A 21 A 22 A 23 A 24 A 25 A 26 A 27 A 28 A 29 A 20 A 21 B 22 A 23 A 24 A 25 A 26 A	- 7	,														
9 Variance for raw mean difference in independent groups 10	8	}														
10 Image: Constraint of the sector of the groups separately. In this case the program can pool the valance in the two groups (option 1) or not pool them (prior 2). 14 Image: Constraint of the groups separately. In this case the program can pool the valance in the two groups (option 1) or not pool them (prior 2). 15 Image: Constraint of the groups separately. In this case the program can pool the valance in the two groups (option 1) or not pool them (prior 2). 16 Image: Constraint of the groups separately. In this case the program can pool the valance (and weights) used in an analysis of raw mean differences. It has no impact on analyses of standardized mean differences. 18 Image: Constraint of the groups separately. In this case the program can pool the valance (Revman, STATA) 20 Image: Constraint of the groups separately. In this case the program can pool the valance (Revman, STATA) 21 Image: Constraint of the groups separately. Image: Constra	- 9)							Variance for ra	aw mean difl	erence in i	ndependent	groups			
11 Image: Constraint of the state of	10)														
12 elect to enter the SD for each of the groups separately. In this case the program can pool the variance in the two groups (option 1) or not pool them (option 2). 15 This option affects the variance (and weights) used in an analysis of raw mean differences. It has no impact on analyses of standardized mean differences. It has no impact on analyses of standardized mean differences. It has no impact on analyses of standardized mean differences. 18 ••••••••••••••••••••••••••••••••••••	11								When a study in	cludes data for	two independ	dent groups, th	ne user may			
13 program can pool the variance in the two groups (option 1) or not pool 14 image: control pool 15 image: control pool 16 image: control pool 17 image: control pool 18 image: control pool 19 image: control pool 20 image: control pool 21 image: control pool 22 image: control pool 23 image: control pool 24 image: control pool 25 image: control pool 26 image: control pool 27 image: control pool 28 image: control pool 29 image: control pool 31 image: control pool 32 image: control pool 33 image: control pool	12	2							elect to enter the	SD for each o	f the groups :	separately. In t	this case the			
14 Image: Control of Cont	13	}							program can poo them (option 2)	I the variance	n the two gro	ups (option 1)	or not pool			
15 This option affects the variance (and weights) used in an analysis of raw mean differences. It has no impact on analyses of standardized mean differences. It has no impact on analyses differences. It has no impact on analyses differences. It has no	14								arom (opdorr 2).							
16 mean differences. It has no impact on analyses of standardized mean differences. 17 differences. 18 imain differences. 19 imain differences. 20 imain differences. 21 imain differences. 22 imain differences. 23 imain differences. 24 imain differences. 25 imain differences. 26 imain differences. 27 imain differences. 28 imain differences. 29 imain differences. 30 imain differences. 31 imain differences. 32 imain differences. 34 imain differences.	15)							This option affec	ts the variance	(and weights	s) used in an a	nalysis of rav	V		
17 Image: Cancel and the second sec	16	i .						_	mean differences	s. It has no imp	lact on analy:	ses of standari	dized mean			
18 Image: Concept with a state of the st	17	r							differences.							
19 Assume a common variance 20 C 21 O not assume a common variance (Revman, STATA) 22 C 23 C 24 C 25 C 26 C 27 C 28 Cancel 29 C 30 C 31 C 32 C	18	5							G Assume a si							
20 C Do not assume a common variance (Revman, STATA) 22 23 23 24 25 26 26 27 28 28 29 28 30 29 31 0k 32 0k	19	1							·· Assume a cr	Sminori vanario	c					
21 22 23 24 25 26 27 28 29 29 30 31 32 33	20	,							C Do not assu	me a common	variance (Re	vman, STATA)			
22 23 24 25 26 27 28 29 30 31 32 33	21)						_								
23 24 25 26 27 28 29 30 31 32 33 34	22							_								
26 26 27 28 29 30 31 32 33 34	23															
26 27 28 29 29 30 31 32 33 34	24															
27 28 29 30 31 32 33 44	20	2														
29 30 31 32 33 34	20	,						-								
29 30 31 32 33 34	27	2						-								
30 Apply 31 0k 32 0k 33 34	20	,											Ca	ncel		
31 32 33 34	30	,											۵r	inlu		
32 33 34	31	,														
33	32)												k		
	33	•						_								
	34							-						_		

By convention we've put the Experimental group (Donor) in the first columns and the control group in the next two columns.

The program will compute the mean difference as Experimental minus Control. Thus, a positive difference means that the donors had a higher BP.

(The column labeled Direction allows you to control this process. "Auto" means that the program will assign a "+" if the first group was higher and a "-" if the second group was higher.

It's always a good idea to check at least one study and make sure that we have the direction right. For this purpose we'll use the first study (Nalarian). The mean BP was 134 for Donor and 130 for Control. The Difference in means is positive (+4.000) which means that the donor group had a higher mean.

₊ C	omprehensive meta	a analysis	- [C:\Users\	Biostat\Dropbo	ox\Worksh	ops Three-D)ay∖BP after Ki	dney donation\Sy	stolic BP afte	er kidney do	nation.cma]				
<u>F</u> ile	<u>E</u> dit Format <u>V</u> ie	w <u>I</u> nsert	Identify]	<u>F</u> ools Comput	ational op	tions Analy	/ses <u>H</u> elp								
Run	analyses 🔸 🗞 [ጋ 🚅 🖷	8	አ 🖻 🛍	· _ ا	'= * ≣ <i>∔</i>	% *** →	$\checkmark \rightarrow + \checkmark$							
	Study name	Donor Mean	Donor Std-Dev	Donor Sample size	Control Mean	Control Std-Dev	Control Sample size	Effect direction	Difference in means	Std Err	Variance	L	м	N	0
1	Najarian, 1992	134.000	15.000	57	130.000	21.000	50	Auto	4.000	3.497	12.232				
2	Undurraga, 1998	125.000	18.000	30	118.000	13.000	30	Auto	7.000	4.054	16.433				
3	Talselth, 1986	140.000	23.000	32	132.000	29.000	32	Auto	8.000	6.543	42.813				
4	Williams, 1886	136.000	25.000	38	129.000	16.000	16	Auto	7.000	6.786	46.056				
5															
6															
7															
8	1														
9	1														
10	1														
11															
12															

• To run the analysis, click [Run analysis]

	# Comprehensive met	analysis	- [C:\Users\	Biostat\Dropbo	ox\Worksh	ops Three-I	Day∖BP after K	idney donation\Sy	stolic BP afte	er kidney doi	nation.cma]				
ſ	<u>F</u> ile <u>E</u> dit Format <u>V</u> ie	v <u>I</u> nsert	Identify <u>1</u>	ools Comput	ational opt	tions Anal	yses <u>H</u> elp								
	Run analyses → 🎕 [] 🚅 🖷	i 🖬 🥌	ቆ 🖻	ا 🗕 🔝	'= ' ≣ ;	% ta ti	$\checkmark \rightarrow + \checkmark$	☐ ੈ↓ _Å ↓	•					
C	Study name	Donor Mean	Donor Std-Dev	Donor Sample size	Control Mean	Control Std-Dev	Control Sample size	Effect direction	Difference in means	Std Err	Variance	L	м	N	0
	1 Najarian, 1992	134.000	15.000	57	130.000	21.000	50	l Auto	4.000	3.497	12.232				
	2 Undurraga, 1998	125.000	18.000	30	118.000	13.000	30	Auto	7.000	4.054	16.433				
	3 Talselth, 1986	140.000	23.000	32	132.000	29.000	32	Auto	8.000	6.543	42.813				
	4 Williams, 1886	136.000	25.000	38	129.000	16.000	16	Auto	7.000	6.786	46.056				
	5														
	6														
	7														
	8														
	9														
	10														
	11														
	12														

This is the basic analysis screen

Initially, the program displays the fixed-effect analysis. This is indicated by the tab at the bottom and the label in the plot.

Right-click on the forest plot > Customized > Set the scale to 20

Data er	try t⊒	Next table	井 High	resolution pla	ot 🛛 🔁 Sele	ect by 🛛 🕇	- Effect meas	sure: Differe	nce in means	-=-	II II I	E ł 🗋	Q		
Model	Study name			Statis	tics for each	study				Differenc	ce in means a	nd 95% Cl			
		Difference in means	Standard error	Variance	Lower limit	Upper limit	Z-Value	p-Value	-20.00	-10.00	0.00	10.00	20.00		
	Najarian,	4.000	3.497	12.232	-2.855	10.855	1.144	0.253							
	Undurraga,	7.000	4.054	16.433	-0.945	14.945	1.727	0.084					-		
	Talselth,	8.000	6.543	42.813	-4.824	20.824	1.223	0.221					**		1
	Williams,	7.000	6.786	46.056	-6.301	20.301	1.031	0.302		- -			+ Show/h	ide forest plot	1
		3.010	2.000	3.520	1.200	10.342	2.020	0.012				<u> </u>	Scale		Scale25 to +.25
														ſ	Scale50 to +.50
															Scale -1 to +1
														U U	Scale -2 to +2
															Scale -4 to +4
															Scale -8 to +8
															Customized

🕂 Compre	nensive meta	analysis - [/	Analysis]				1.00								
<u>F</u> ile <u>E</u> dit	F <u>o</u> rmat <u>V</u> iev	w Computa	ational optio	ns Analyse	s <u>H</u> elp							_			
+ Data ent	ry ti	Next table	井 High	resolution pl	ot 🔁 Sele	ect by 📕	- Effect meas	sure: Differe	nce in means		II 11 🕸 I	٤ <mark>1</mark>	Q		
Model	odel Study name Statistics for each study Difference in means and 95% CI Weight (Fixed)														
		Difference in means	Standard error	Variance	Lower limit	Upper limit	Z-Value	p-Value	-20.00	-10.00	0.00	10.00	20.00	Relative weight	
	Najarian, Undurraga,	4.000	3.497 4.054	12.232 16.433	-2.855 -0.945	10.855 14.945	1.144	0.253			+			43.56	
F	i alseith, Williams,	7.000	6.786	42.813	-4.824 -6.301	20.824	1.223	0.221		-				12:45	
Fixed		5.818	2.308	5.328	1.293	10.342	2.520	0.012				•			

All studies have mean differences over 0.0, which means that the donor group had a higher Systolic BP than the control.

The effects seem to be reasonably consistent. The confidence interval for all studies overlaps the mean effect size.

The pooled effect is 5.818, which means that the mean Systolic BP in the donor group was about 6 points higher than the control.

© www.Meta-Analysis.com

Click [Both models]

The program displays results for both the fixed-effect and the random-effects analysis.

•] Comprehens	sive meta	analysis - [A	Analysis]												
<u>File</u> <u>E</u> dit Form	mat <u>V</u> iev	v Computa	tional optio	ns Analyse	s <u>H</u> elp										
← Data entry	ti i	Next table	🛨 High	resolution pl	ot 🔁 Sel	ect by 🕇	- Effect mea	sure: Differe	nce in means	-=-	II II 🕸	í £	Q		
Model Stu	del Study name Statistics for each study Difference in means and 95% CI Weight (Fixed) Weight (Random)														
		Difference in means	Standard error	Variance	Lower limit	Upper limit	Z-Value	p-Value	-20.00	-10.00	0.00	10.00	20.00	Relative weight	Relative weight
Naj	ajarian,	4.000	3.497	12.232	-2.855	10.855	1.144	0.253						43.56	43.56
Und	ndurraga,	7.000	4.054	16.433	-0.945	14.945	1.727	0.084			+		-	32.42	32.42 📕
Tak	ilselth,	8.000	6.543	42.813	-4.824	20.824	1.223	0.221						12.45	12.45
	inamo,	7.000	6.786	46.056	-6.301	20.301	1.031	0.302		-				11.57	11.57
Fixed		5.818	2.308	5.328	1.293	10.342	2.520	0.012							
Random		5.818	2.308	5.328	1.293	10.342	2.520	0.012				+			

Under the fixed-effect model the pooled mean difference is 5.818. Under the random-effects model the pooled mean difference is also 5.818.

This tells us that the any between-study variance in the observed effects is within the range we would expect based on sampling error. Our estimate of the between-study variance in true effects is zero. Therefore, the fixed-effect weights and random-effects weights are identical.

While both models yield the same result, we still need to say which model we are using.

- The fixed-effect model would be appropriate if all the studies were virtual replicates of each other. This is not the case, which is not the case here since the study populations varied in numerous (if unknown) ways.
- The random-effects model would be appropriate if the studies vary in ways that may impact the effect size. Therefore, we will use the random-effects model.

• Click Random on the tab at the bottom

The plot now displays the random-effects analysis alone.

Compret	ensive meta anal	ysis - [Analys	is]				1.000								
<u>ile E</u> dit	F <u>o</u> rmat <u>V</u> iew Co	omputational	options A	nalyses <u>H</u> e	lp										
⊢ Data ent	ry t∓ Next t	able	- High resolu	ition plot	Belect by	+ Effe	ct measure: I	Difference in I	means 🛛 🔳		ĭ ≇ E ₹	🔱 🗘			
Model	del Study name Statistics for each study Difference in means and 95% CI Weight (Random)														
		Difference in means	Standard error	Variance	Lower limit	Upper limit	Z-Value	p·Value	-20.00	-10.00	0.00	10.00	20.00	Relative weight	
	Najarian, 1992	4.000	3.497	12.232	-2.855	10.855	1.144	0.253						43.56	
	Undurraga, 1998	7.000	4.054	16.433	-0.945	14.945	1.727	0.084				-		32.42	
	Villiams 1886	8.000 7.000	6,543	42.813	-4.824	20.824	1.223	0.221		_				12.45	
andom		5.818	2.308	5.328	1.293	10.342	2.520	0.012							

A quick view of the plot suggests the following

- The BP was always higher in the donor group than the control
- The observed effects are pretty consistent, in that the confidence intervals for all studies but one overlap the mean effect size.
- The summary effect is 5.818 with a Cl of 1.293 to 10.342.
- The summary effect has a Z-value 2.520 a *p*-value of 0.012. Thus we can reject the null hypotheses that the true mean difference is 0.0.
- At the same time, the magnitude of mean difference is relatively modest

The confidence interval tells us that the <u>mean</u> effect size falls in range of 1.293 to 10.342. It tells us nothing about how widely the true effect size varies from study to study. This is an important clinical issue since we need to distinguish between various possibilities, such as

- a) The mean BP is consistently about 6 points higher in the donor group
- b) The donor group sometimes has a mean BP 0 points higher, sometimes 6 points higher, sometimes 12 or more points higher

To address this we need not only the mean difference but also the standard deviation of the differences. For this we turn to the next screen.

Click Next Table

👬 Compre	Format View Generatorial options Analyses Help try Image: High resolution plot Image: Help Select by Study name Statistics for each study Difference in means and 95% Cl Weight (Random) Difference Standard Variance Lower limit Upper limit Z-Value p-Value 20.00 10.00 20.00 Relative weight														
<u>F</u> ile <u>E</u> dit	Format Minu C	emputation	al options A	nalyses <u>H</u> e	lp										
🔶 Data en	try the t	table	井 High resol	ution plot	🔁 Select by	+ Effe	ct measure:	Difference in	means 🕶			\$E]	Q 1		
Model	Study name			Stati	istics for each	study				Dif	fference i	n means a	nd 95% Cl		Weight (Random)
		Difference in means	Standard error	Variance	Lower limit	Upper limit	Z-Value	p-Value	-20.00	-10.	.00	0.00	10.00	20.00	Relative weight
	Najarian, 1992	4.00	D 3.497	12.232	-2.855	10.855	1.144	0.253							43.56
	Undurraga, 1998	7.00	D 4.054	16.433	-0.945	14.945	1.727	0.084							32.42
	Talselth, 1986	8.00	D 6.543	42.813	-4.824	20.824	1.223	0.221			-				12.45
	Williams, 1886	7.00	D 6.786	46.056	-6.301	20.301	1.031	0.302							11.57
Random		5.81	8 2.308	5.328	1.293	10.342	2.520	0.012							

The program displays this screen

Comprehensiv	ve meta analysis - [Ar	nalysis]															
<u>File Edit Fo</u> rma	at <u>V</u> iew Computati	ional o	ptions Anal	yses <u>H</u> elp													
← Data entry	t⊒ Next table	₽	High resolutio	n plot 🛛 🔁	Select by	+ Effect me	easure: Differe	ence in means 🔹		II ⊅E ₹	🖓 🖞	I					
Model			Eff	iect size an	d 95% confi	dence interv	al	Test of nu	ıll (2-Tail)		Hetero	ogeneity			Tau-so	quared	
Model	Nun Stud	nber dies	Point estimate	Standard error	Variance	Lower limit	Upper limit	Z-value	P-value	Q-value	df (Q)	P-value	l-squared	Tau Squared	Standard Error	Variance	Tau
Fixed		4	\$ 5.818	2.308	5.328	1.293	10.342	2.520	0.012	0.497	3	0.920	0.000	0.000	19.300	372.507	0.000
Random		4	5.818	2.308	5.328	1.293	10.342	2.520	0.012								

The section labeled "Effect size and 95% confidence interval and the section labled "Test of null" address the <u>mean</u> effect size and the null hypothesis that the mean difference is zero. These are the same statistics we saw on the previous screen. The mean difference is 5.818 (1.293 to 10.342), the Z-value for a test of the null is 2.520 and the p-value for a test of the null is 0.012.

The section labeled Heterogeneity shows a test of the null hypothesis that the true effect size is identical in all four studies and that 100% of the variation in the observed effects is due to sampling error. Put another way, if every one of the studies had an infinite sample size (so that we knew the true effect size in that study exactly) the observed effects would all be identical to each other.

To test this hypothesis we compute Q, which is basically a weighted sum of squares (we compute the difference of every effect size from the mean effect size, square that difference, assign larger weights to more precise studies, and then sum these weighted values). If the null hypothesis is true (that all the variation in effects is due to sampling error), the expected value of Q is equal to the number of studies minus 1 (here, 4 minus 1 equals 3).

The observed Q value is 0.497. This is less than we would expect if the null is true (3.0). Therefore, we do not reject the null. We have no evidence that the true effect size varies from study to study.

Since the observed variance is actually less than we would expect by chance alone, our estimate of the true variance must be zero. This is expressed in several statistics.

© www.Meta-Analysis.com

 l^2 is 0.0%. This tells us that about 0& of the variance that we see in the forest plot reflects difference in the true effect sizes, while the other 100% reflects sampling error. Put another way, if we were able to plot the true effects rather than the observed effects, the data points would align one directly above the other.

Importantly, l^2 is a proportion – it tells us what proportion of the observed variance is real (if our esimates are correct) but does not tell us how much variance there is. However, if l^2 is 0% then it follows that the absolute variance must also be 0.0.

- T^2 (shown as 0.000) is the estimate of variance in true effect sizes.
- *T* (shown 0.000) is the estimate of the standard deviaiton in true effect sizes.

We can use this to get a sense of how the true effects are distributed.

If the mean effect size is 5.818, if the standard deviation of true effects is 0, then the true effect size for all studies is 5.818.

This estimate also assumes that the mean of 5.818 is known. If we want to report the prediction interval (to say that 95% of all studies will have a mean difference in the range of A to B) then we need to take into account also the imprecision of the mean effect. At the moment, however, we're focusing on the dispersion of effects. And based on this sample we have no evidence that the effect size varies from study to study.

Click Next table

We want to create a high-resolution plot

Click here to hide the column of weights

+ Compre	hensive meta anal	ysis - [Analysi	is]											
<u>File</u> Edit	Format View Co	omputational	options A	nalyses <u>H</u> el	р									
🔶 Data en	try t⊐ Next t	able	- High resolu	ition plot	Select by	🕂 Effe	ct measure: I	Difference in I	means 🕶		I.F.E. E	🖞 🖉		
Model	Study name	Statistics for each study								Difference				
		Difference in means	Standard error	Variance	Lower limit	Upper limit	Z-Value	p-Value	-20.00	-10.00	0.00	10.00	20.00	
	Najarian, 1992	4.000	3.497	12.232	-2.855	10.855	1.144	0.253						
	Undurraga, 1998	7.000	4.054	16.433	-0.945	14.945	1.727	0.084			+		-	
	Talselth, 1986	8.000	6.543	42.813	-4.824	20.824	1.223	0.221						
	Williams, 1886	7.000	6.786	46.056	-6.301	20.301	1.031	0.302		-				
Random		5.818	2.308	5.328	1.293	10.342	2.520	0.012						

Right-click here and hide some of the statistics columns

	hensive meta anal	vsix - [Analys	icl													
en en	Description of the second seco															
File Edit	File Folk Format Alexandrian obtions Augustes Help															
🔶 Data entry 🔁 Next table 🔪 🌐 High resolution plot 🛛 🖶 Select by 🕇 Effect measure: Difference in means 📲 🗔 🗒 🛱 🐺 🛃 🗜 🧎 👔 😲																
Model	Model Study name Statistics for each study									Difference in means and 95% Cl						
		Difference in means	Standard eiror	Variance	Lower limit	Upper limit	Z-Value	p-Value	-20.00	-10.00	0.00	10.00	20.00			
	Najarian, 1992	4.000	3.497	12.232	-2.855	10.855	1.144	0.253								
	Undurraga, 1998	7.000	4.054	16.433	-0.945	14.945	1.727	0.084			+		-			
	Talselth, 1986	8.000	6.543	42.813	-4.824	20.824	1.223	0.221								
	Williams, 1886	7.000	6.786	46.056	-6.301	20.301	1.031	0.1 🗛	Sort Lo-Hib	v p-Value						
Random		5.818	2.308	5.328	1.293	10.342	2.520	0.1 2		yp talae		+				
								Ā	SOLT HI-LO D	y p-value						
									Show/hide I	basic stats						
								ń	Customize b	oa ic stats						

T Compre	nensive meta anai	ysis - [Analys	12]					-			and the second se	10 July 10 Jul		
<u>F</u> ile <u>E</u> dit	F <u>o</u> rmat <u>V</u> iew Co	omputational	options A	nalyses <u>I</u>	<u>H</u> elp									
← Data en	- Data entry 🔁 Next table 🗱 High resolution plot 🛛 🔁 Select by 🕇 Effect measure: Difference in means										11 I I I I I I I I I I I I I I I I I I	2		
Model	Study name	Statistics for	each study		Difference	in means a	nd 95% Cl		_					
		Difference in means	p-Value	-20.00	-10.00	0.00	10.00	20.00		Cust	omize display		×	
	Najarian, 1992	4.000	0.253							She	W	Decimals	Alignment	I
	Talselth, 1986 Williams, 1886	8.000	0.084 0.221 0.302		-	\pm				•	All columns in this block	-	•	
Random		5.818	0.012								Difference in means	Auto -	Auto	
										-		Auto	Add	I.
											Standard error	Auto 💌	Auto	
											Variance	Auto 💌	Auto 💌	I.
											Lower limit	Auto 💌	Auto 💌	
											Upper limit	Auto 💌	Auto 💌	I.
											Z-Value	Auto 💌	Auto 💌	I.
										$\overline{}$	p-Value	Auto 💌	Auto 💌	I.
									11 -					
											Cancel Apply	Ok		
									_	-		_		

© www.Meta-Analysis.com

- Select "Random" rather than "Both" on the bottom tab
- Click Hi-Resolution plot
- Adjust the columns widths

Summary

This analysis includes four studies where persons who donated a kidney were compared with persons in a control group. Outcome was the Systolic Blood Pressure. Effect size was the difference in mean Systolic Blood Pressure.

Is kidney donation related to Systolic blood pressure?

The pooled difference in means is 5.818, which means that the systolic BP for persons who donated a kidney was (on average) 5.818 units higher than the systolic BP for persons who did not donate a kidney.

These studies were sampled from a universe of possible studies defined by certain inclusion/exclusion rules as outlined in the full paper. The confidence interval for the mean difference is 1.293 to 10.342, which tell us that the <u>mean</u> difference in the universe of studies could fall anywhere in this range. This range does not include a difference of zero, which tells us that the true difference is probably not zero.

Similarly, the Z-value for testing the null hypothesis (that the mean difference is zero) is 2.520, with a corresponding p-value is 0.012. We can reject the null that mean systolic BP is the same in both groups, and conclude that the mean systolic BP is higher in the donor group.

Does the effect size vary across studies?

The *observed* effect size varies somewhat from study to study, but a certain amount of variation is expected due to sampling error. We need to determine if the observed variation falls within the range that can be attributed to sampling error (in which case there is no evidence of variation in true effects), or if it exceeds that range.

The *Q*-statistic provides a test of the null hypothesis that all studies in the analysis share a common effect size. If all studies shared the same effect size, the expected value of *Q* would be equal to the degrees of freedom (the number of studies minus 1).

The *Q*-value is 0.497 with 3 degrees of freedom. Thus, the observed dispersion is less than the amount of dispersion we would expect to see based solely on sampling error. Our best estimate of the dispersion in true effects is zero, and it follows that we cannot reject the null hypothesis that the effect size is the same in all studies.

The l^2 statistic tells us what proportion of the observed variance reflects differences in true effect sizes rather than sampling error. This is zero.

 T^2 is the variance of true effect sizes (in log units). Here, T^2 is zero. *T* is the standard deviation of true effects (in log units). Here, *T* is zero.

© www.Meta-Analysis.com